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ABSTRACT

Observations made by the SCATHA and DE-1 spacecraft reveal the existence of
equatorially trapped plasmas. These plasmas may be described by a bi-Maxwellian
distribution function. A resultant parallel electric field arises as a consequence of this
distribution. This thesis models the latitudinal density profiles and the resultant parallel
electric field that occurs by integrating the particle distributions to obtain the density,
and assuming quasi neutrality to solve for the electric potential and hence the electric
field. The results show that the density profile is a maximum at the equator and the
equatorially trapped plasma is confined closer to the equator for higher anisotropy
ratios. The modeled density profiles are in agreement with some observations. The
electric fields that result are on the order of 0.1 uV/m pointing away from the magnetic
equator with greater anisotropy leading to larger electric field strength. Density
minimums have also been observed at the magnetic equator. This minimum. can be

explained by the presence of a field aligned electron distribution.
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. INTRODUCTION

Most of the matter in the universe exists in a plasma state. This is true in
the region of space outside the earth’s atmosphere. The study of the plasma
environment around the earth has practical applications in the understanding of
spacecraft charging, and propagation of electromagnetic waves in plasma.
Much of our understanding of the earth’s environment comes from particle and
electromagnetic wave measurements taken by satellites. Such measurements
provide basic information on the satellite environment, and clues about basic
plasma processes, such as wave-particle interactions. A particularly interesting
case of basic plasma physics comes from the geophysical phenomenom known
as equatorially trapped plasmas. Equatorially trapped plasmas are those
plasmas which are trapped from the magnetic mirror geometry of the earth’s
magnetic field. These plasmas are typically confined to within a few degrees

latitude of the magnetic equator.

The purpose of this thesis is to examine the nature of equatorially trapped
distributions. We will show that they may be described by a bi-Maxwellian
distribution function, and explore the consequences of this distribution. One
consequence of such a distribution is that there will be an electric field parallel
to the magnetic field in order to ensure quasi neutrality of the plasma. In the
work developed below, self-consistent (equatorial) particle and field distributions
will be developed. These results allow mapping of the plasma distribution along
the magnetic field line. The density profiles can then be obtained from the
integration of the particle distributions. These profiles will be compared to

observed density profiles for a comparison between the model and the data




obtained along magnetic field lines. These results will be derived for a steady
state plasma where the particles are experiencing motion along a magnetic field
line, and the density is low enough so that it may be assumed to be

collisionless yet high enough so that a statistical treatment is valid.

Section Il of this thesis will present the basic theories of plasma physics
which will be used and show examples of plasmas which are equatorially
trapped. In Section lli, it will be shown that the equatorially trapped plasmas
observed by the P78-2 (SCATHA) and Dynamics Explorer-1 (DE-1) satellites
may be described by a bi-Maxwellian distribution function. The consequences
of this distribution on latitudinal density profiles and resultant parallel electric

field will be explored in Section IV.




. BACKGROUND AND THEORY

A. THEORY
1. Plasma Definition
A plasma is a collection of discrete ionized and neutral particles, which
has overall electrical neutrality. The physical dimensions of the plasma must
be large in comparison with a characteristic length A, called the Debye length.
The total number of charges in a sphere with radius A, must be much greater

than 1.
2. Debye Shielding

The electrostatic potential of a point charge q in a vacuum is given by

=—9_ volts
v 4reor

where vy is the electrostatic potential, g is the permittivity constant
(eo = 8.85x107'2 Farads/m) and r is the distance from the point charge [Ref. 1].
if the charge is immersed in a plasma, a positive charge will attract electrons
while repelling ions, and similarly, a negative charge will attract ions and repel
electrons. The potential then becomes

-r

=9 %
v 41r.e°re




k is the Boltzmann constant (k = 1.38x10"2 Joules/K), T, is the electron
temperature, which is a measure of the average kinetic energy, n is the
equilibrium density of the plasma, and e is the charge of electrons
(e =1.6x10""* Coulombs). This has the effect of screening out electric
potentials in a plasma. The electron temperature is used in the definition of A
because the electrons are more mobile than the ions and do most of the
shielding by creating a surplus or a deficit of negative charge. [Ref. 2]
3. Plasma Parameter

In order for a collection of ionized particles to be considered a

collisionless plasma, three conditions must be satisfied. The Debye length must

be much less than the dimensions of the plasma. The number of particles in a
Debye sphere defined as

4rni3
3

ND‘

must be much greater than 1, that is, there must be a large enough number of
particles for Debye shielding to be statistically valid. Finally the frequency of

collisions of particles must be low. The plasma paramater g is defined as:

Q‘W;‘

and for a collisionless plasma g«1. [Ref 2,3]

Typical values for the plasmasphere, which is the region to be
considered in this thesis, are k7, = 1 eV, n=1x10°m™, and the typical
dimensions are on the order of 1000 km. This gives Ap = 7.4 m, Np = 10°, and
g =10 Thus the particles considered may be treated as a collisionless

plasma.




4. Motion in a Uniform Magnetic Field

A collisionless plasma will behave as a colliection of individual particles.
The individual charged particles will move in trajectories determined by the
applied electric and magnetic fields. For space applications the fields resulting
from the particle motion are often small and may be neglected. This is
particularly true for the magnetic field, less so for the electric field. The force
acting on a charged particle moving in a combined E and B field is given by the

Lorentz equation:
F = q(E = vxB)
where F is the Lorentz force, and v is the particle velocity.

For the case where E = 0, and the magnetic field is uniform, a charged

particle will execute simple cyclotron gyration with a frequency

and radius

rn = Voerp _ mvparp _ mvsina
L —

o igiB ~  1qI1B

where mand v are the mass and velocity of the charged particle and the pitch
angle a is the angle between the velocity vector of the particle and the
magnetic field. The velocity parallel to the magnetic field line, v,, = vcosa, is
not affected by the magnetic field. This motion describes a circular orbit about
a guiding center which is travelling along the magnetic field line with velocity
voar- The trajectory of this particle is a helix with it's axis parallel to the field
line. [Ref. 3]




5. Magnetic Mirror

The magnetic moment of a gyrating particle is defined to be

2
MYperp
=28

If we now consider a patticle gyrating into a slowly converging magnetic field,
the magnetic foice will have two components. One component is in the plane
of the orbit about the guiding center, and the other is along the the fieid line
pointing in the direction of lower B. As the particle travels along the field line,
remains invariant. Thus as the particle travels from a weak to a strong B field
region v,e, must increase. Since the total energy must also remain constant,
the parallel component of velocity must then decrease. If the magnetic field
becomes strong enough v,,, Will become zero and the particle will be reflected
back. Thus a particle may become trapped in a magnetic mirror where there is

a stronger magnaetic field region on either side of a weak field region.
6. Geomagnetic Field

The geomagnaetic field may be represented as a magnetic dipole fixed

at the center of the earth. The strength of the magnetic field is given by

uOM . 2a 1172
B = ——(1 + 3sin“A
41cr3( )

where u, is the permeability constant, M is the magnetic dipole moment of the

earth, A is the geomagnetic latitude and r is the distance from the center of the

earth. The equation of the field lines is
r = rocos?\ = LAgcos?\
where Rg is the radius of the earth, and L is a label for a field line, equal to the

distance, in earth radii, at which that field line crosses the magnetic equator.

6




Figure 1 is a schematic representation of the magnetic field lines [Ref. 2]. If we

now define the strength of the magnetic field at the equator to be

oM
Bom ———
4Z(LRE)

the strength of the magnetic field is then given by

_ Bol(1 +3sin®)'?

8 cos®A

The magnetic field of the earth. which is stronger at the poles than at the
equator forms a natural magnetic mirror. The distance s along the magnetic
field line, defined to be 0 at the equator, is related to the magnetic latitude by

sinA(1 + 3sin?\)'? . sinh~'(v3sin))

S=LRE 2 2\,5

Figure 1. Magnetic Field lines for a dipole [Ref. 2].
7. Statistical Distribution

When dealing with a system which is composed of a very large
number of individual particles it becomes impractical to solve the equations of




motion for the system. Instead the particles may be treated statistically through
the use of the distribution function. Classically the distribution function gives the
probability distribution of the values of the coordinates and momenta of the
particles. The density of particles in coordinate space is obtained by integrating

the distribution function over momentum or velocity space. That is:
n=[f@PV)dv

where n is the density, and f(7,v) is the distribution as a function of position

and velocity integrated over three dimensional velocity space.

The two distribution functions of interest in this thesis are the bi-

Maxwellian, and the Maxwellian or isotropic distribution functions, given by

1”7 -_'!['3'0+V_3'.}
fbi="[ m M m ] o 2 Ko Kloa

21K T orp || 27K T gy

m 12 _m2
o KT
fiso "[2::/0‘] 6

where T, and T,, are the characterictic temperatures i~ the perpencicular

and parallel directions with respect to the magnetic field line.

B. PREVIOUS OBSERVATIONS
Observations made by the P78-2 (SCATHA) and the Dynamics Explorer-1

(DE-1) spacecraft at the earth’s magnetic equator reveal the existence of
equatorially trapped plasmas. A description of the spacecraft instrumentation
and environment along with several examples of observed distributions are

presented here.




1. P78-2 (SCATHA)

The SCATHA spacecraft was launched in January of 1979 in a near
synchronous, near earth orbit. The body of the satellite is cylindrical in shape
with a length and diameter of approximately 1.75 meters. The spin rate of the
satellite is approximately 1 rpm with an axis perpendicular to the earth-sun line
and in the orbital plane. The observations discussed here were taken from the
UCSD SC-9 Auroral particles experiment shown in relationship to the SCATHA

spacecratft in Figure 2.

The SC-9 experiment consists of 5 Electrostatic Analyzers (ESA's),
four of which are contained in two Rotating Detector Assemblies (RDA's). Each
RDA contains a pair of ion and electron ESA’s, and can be rotated through 220
degrees providing measurements of particle flux at various angles. The fifth
ESA, for detecting ions, is mounted in the Fixed Detector Assembly (FDA). The
configuration of the SC-9 experiment is shown in Figure 3 [Ref. 4]. One RDA
is a high energy (HI) detector covering an energy range from 1 eV to 81 keV.
The other RDA (LO detector) and the FDA (FIX detector) are low energy
detectors covering an energy range from 1 eV to 2 keV. These detectors scan
the energy range in 64 exponentially spaced energy levels over a period of 16
seconds, with an option to dwell at specific energy levels from 2 to 128
seconds. The energy resolution at each step is approximately 20 percent.
[Ref. 4,5)

On day 179 of 1979 the LO detector was parked parallel to the spin
axis of the satellite, and the Hl and FIX detectors were looking in the radial
direction. The HI and FIX detectors provide pitch angle distributions, while the
LO detector, which is looking approximately perpendicular to the magnetic field

line was used to provide energy distribution information. Figures 4 and 5 show

9
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the equatorial ion and electron pitch angle distributions as observed by the
SCATHA spacecraft on day 179 of 1979. These data are taken at 1000 local
time, L =5.5, at the magnetic equator. The count rate is plotted as a function
of the pitch angle through 360 degrees, with pitch 'angles greater than 180
degrees corresponding to looking earthward. The count rate is peaked at pitch
angles of 90° and 270° indicating equatorially trapped distributions. The 41 eV
electron distribution in Figure 5 shows peaks at 0° and 180°, in addition to peaks
at 90°270%. This indicates that there is also a field aligned component to the
electron distribution. The equatorial ion and electron energy distributions are
shown in Figure 6. The logyof is plotted as a function of energy for pitch angles
near 90°. The inset in this figure shows the low energy portion of the
distribution for ions. The flattening out of this portion indicates a non-thermal
character of the plasma. This data has been previously examined by Olsen

[Ref. 5] and will be examined in greater detail in Section lll.

The data from day 41 of 1979 provide a second example of an
equatorially trapped plasma seen by the SCATHA spacecraft. These data were
taken at 2100 local time, and L =5.3. Figures 7 and 8 are plots of the logof
versus Jitch angle for ions and electrons respectively. Both Figures 7 and 8
show peaks at 90° pitch angle, again indicating that the particles are
equatorially trapped. A mass analysis of these data with the Light lon Mass
Spectrometer shows that the ions are primarily H*. The lowest energy ions
(7.25 eV) show evidence of a field-aligned distribution, as well (Fig. 7). All of
these data show a characteristic decrease in the width of the trapped
distribution with increasing energy. This characteristic of the data shown in
Figures 4,5,7,and 8 suggests that the data may be fitted with a bi-Maxwellian
distribution function. This will be pursued below.
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2. Dynamics Explorer-1 (DE-1)

The Dynamics Explorer-1 (DE-1) spacecraft was launched on August
3, 1981 in an elliptical polar orbit with an apogee of 4.9 R and perigee of 1.1
Re geocentric. The general shape of the spacecraft is a 1 meter long polygon
with a diameter of approximately 1.4 m. The spin rate is 6 seconds, with an
axis perpendicular to the orbit plane. The data analyzed here were taken using
the Retarding lon Mass Spectrometer (RIMS) instrument. Figure 9 shows the
DE-1 spacecraft and the location of the RIMS detector on it. [Ref. 6.7]

The RIMS instrument consists of three sensor heads. One head
(radial sensor) is mounted to look radially out of the spacecraft perpendicular to
the spin axis while the other 2 (+Z) sensor heads look along the spin axis.
Each of the sensor heads consists of a Retarding Potential Analyzer (RPA)
followed by an lon Mass Spectrometer (IMS). The RPA voltage sweeps from 0
to 50 Volts, providing energy analysis, while the IMS provides for mass analysis
in the 1 to 32 amu range. Pitch angle distributions are obtained from the radial
sensor for ions in the 0 to 50 eV range. This sensor has a radial aperture of
110° in the plane perpendicular to the spin axis and 155° perpendicular to the
spin plane. The spin axis detectors have a resolution of +55°, and are looking
in the direction perpendicular to the magnetic field. [Ref 6,7]

Lower altitude (e.g., below SCATHA) observations of equatorially
trapped ions have been made by the RIMS detector on DE-1. The data from
day 126 of 1982 provides one example of an equatorially trapped plasma. The
satellite is near 4.6 R with an equator crossing at 1100 UT. Figure 10 is a
spin-time spectrogram for H* and He*, from 0930 to 1230 UT. The data was
taken by the radial detector with a 0 Volt retarding potential. The spin-phase is
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Day 126 of 1982.

1 Spin-time Spectrogram

Figure 10. DE
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shown on the left from -180° to 180° with 0° being in the satellite velocity (RAM)
direction. The pitch angle of the sensor is shown by the white lines running
along the spectrogram. The center line shows the spin phase for 0° pitch
angle, and the top and bottom line show spin phase for 180° pitch angle. The
logso (ion counts) is scaled according to the "color" bar to the right of the
spectrogram with white being minimum and black a maximum. From this
spectrogram we can see that for H*, there is a field aligned distribution (a
peaked at 0°,180° which becomes an equatorially trapped distribution (a
peaked at 90°,270% at 1035 UT [Ref 8]. The He* data are similar with count
rate being 1 to 2 orders of magnitude lower than those for H*. Figure 11 is a
line plot of the log,o(count rate) versus pitch angle for ions with peaks at
90° and 270°. These data were taken at 1055 local time, and L = 4.6. The data
for this day has been previously examined by Olsen [Ref. 5).

The second example of equatorially trapped ions at L =4.6 comes
from the data taken on day 315 of 1983. The satellite crosses the equator at
approximately 0545 LT and L=4.6. Figure 12 is a spin-time spectrogram from
0430 to 0700 LT. High count rates are seen for a=90° near the equator. Figure
13 is an RPA-time spectrogram for H* and He* taken by the +Z («=90°% sensor,
for the RPA voltage from 0 to 50 V. These spectrograms show low energies
and counts away from the equator and high fluxes and energies near the
equator. These figures are both indicative of equatorially trapped plasmas.
Figure 14 is a line plot of the log,g(count rate) versus pitch angle for ions with
peaks at 90° and 270°. This data was taken at 0555 local time. Figures 11 and
14 indicate equatorially trapped plasmas, and their shapes also suggest that the
data may be fitted with a bi-Maxwellian. The data for both days 126 and 315

will be examined in further detail in Section lll.
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Oisen [Ref. 9] has shown that there is often a relative density minimum
observed at the magnetic equator, by means of total electron density
measurements. Figure 15 shows such a density profile as observed by the
DE-1 spacecraft on day 296 of 1983. The bottom portion of the figure is a plot
of density versus magnetic latitude as determined from the plasma wave data.
Iin the top portion of the figure the density has been normalized by the factor
(L/4.5)* to eliminate the variations in density induced by the radial component of
the satellite orbit. This density profile is typical when a density minimum is
observed. The trapped ions typically observed with RIMS are confined to +10°
magnetic latitude during this orbit, and are typically found whenever such

mimina are observed.
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ill. BI-MAXWELLIAN DISTRIBUTIONS

The purpose of examining data from the P78-2 (SCATHA) and the
Dynamics Explorer-1 (DE-1) spacecraft is to show that observed distributions of
equatorially trapped plasmas may be described as a bi-Maxwellian. In fitting
the observations with a bi-Maxwellian, the characteristic temperatures
( Toerp and Tp, ) and the density of the plasma may be determined. This
section will present three examples of equatorially trapped plasmas which may
be fitted with a bi-Maxwellian distribution.

A. SCATHA, DAY 179 OF 1979

Figures 16 and 17 show the ion and electron energy distributions,
previously shown in Figure 6, up to 500 eV. These data were measured by the
LO detector at the magnetic equator with a pitch angle near 90°. A fit to the ion
data in the 2 to 100 eV range gives a temperature (T,e,) Of 25 eV and a
density (4x3n/3Q) of 7.2 cm™>. The fit in the 100 to 350 eV range gives a
temperature of 55 eV and density of 2.8 cm=. The fit to the electron data in the
2 to 100 eV range gives a temperature of 27 eV and density of 1.7 cm™. The
fit to the 100 to 1000 eV data gives a temperature of 251 eV and a density of
24 cm™3. Here, the fitting process assumes the distributions are isotropic.
Hence, the density determined in these fits does not give the true density. The
"density” obtained in these fits is therefore designated (4xdn/of2). These results
are consistent with those reported by Olsen. [Ref. 5]
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The pitch angle distributions can be used to obtain the parallel temperature,
and hence a more accurate density. The ion pitch angle distributions, shown in
Figure 4, were examined for the 11.2, 41 and 103 eV energies. The electron
pitch angle distributions, shown in Figure 5, were examined at 41.3 and 523 eV.
The pitch angle distributions, as measured by the HI and FIX detectors, for ions
and electrons are shown in Figures 18 and 19. The log,of is linearly related to
cos?a with a slope proportional to the ratio of the perpendicular to the paralle!

temperature. This relationship is given by

1
_ m m Elog,o(e)  Elogo(e) KToerp | 2
log1of —lw'o[n[anTm][2nkTp,]j Kop T KTy || KTar |05

If the plasma can be described as a bi-Maxwellian, the data will fall along a

straight line, when the angular distribution is plotted vs cos?a. The initial portion
of each pitch angle distribution follow a reasonably straight line in Figures 18
and 19. The angular distributions show a deviation from linearity for cos®a
greater than approximately .05, particularly in the ion data. This is due to the

presence of a warm isotropic background.

The solid lines in Figures 18 and 19 are the results of a bi-Maxwellian fit
using the perpendicular temperature and the density obtained from the fits to
the energy distributions in Figures 16 and 17. The only free parameter left then
is the parallel temperature. In addition a warm isotropic background is included
with the isotropic density being five percent of the total density. The parallel
temperatures of the ions and electrons were estimated from the fits to the data,
as summarized in Table 1. In Figure 18, for the 11.2 eV ions the amplitude of
the fit appears to be too high. This stems from the fact that the distribution
function flattens below 20 eV, as shown in Figure 6. This is a symptom of

quasi-linear diffusion. The fitted density obtained from the energy distributions
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(Figures 16,17) must be corrected to account for the anisotropy and the

spacecraft potential by the factor

1)
n = 4ndn| o~
3 | Toep/ Toar

The data suggest that the spacecraft potential is approximately +8V. The

temperatures and the corrected density are summarized in Table 1.

TABLE 1. DENSITY AND TEMPERATURES, SCATHA

Day 179 of 1979

lons (11.2 & 41 V) lons (103 eV) | Electrons (41.3 éV) | Electrons (523 eV)

Density (cm™) 5.3 1.6 0.7 0.6
KTerp (8V) 25 55 27 251
KT,e (eV) 0.7 1.4 8 19

B. DE-1, DAY 126 OF 1982

Figure 20 is a plot of lng,, (count rate) versus cos?a for the data taken from
10:55 to 10:56 at a magnetic latitude of —0.9°. Figure 21 is a similar plot for data
taken from 10:40 to 10:41, at a magnetic latitude of —4.4°. The solid lines in
these figures are the angular distribution which RIMS would show for an

equatorial bi-Maxwellian with kT, = 11 6V, kT, = 0.4eV, and a density of
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approximately 5 cm™. The equatorial distribution has been mapped to the
latitude where the particle measurements were taken, assuming there is no

paralle! electric field.

C. DE-1, DAY 315 OF 1983

Figures 22 and 23 show the data from 5:55 to 5:56 at A = -0.6° and from
5:25 to 5:26 for A = 8.9°. An equatorial bi-Maxwellian can be fitted to these data
giving temperatures of kTuep= 20 €V, kT,u= 2.5 eV. The density is poorly
defined, due to questions about the detector efficiency, but is approximately
10-30 cm™S,
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IV. MODEL

A. BI-MAXWELLIAN

it has been seen from the data taken by the UCSD/SC-9 and RIMS
instruments on the SCATHA and DE-1 satellites that there is a thermal plasma
population trapped within a few degrees of latitude of the magnetic equator.
These populations may be characterized as bi-Maxwellian distributions. We
want to examine how bi-Maxwellian distributions evolve with magnetic latitude
and the consequences for parallel electric fields. Figure 24 is a contour plot of
a bi-Maxwellian distribution in velocity space at the magnetic equator. The
color bar to the right of the figure shows the scale for the distribution function.
Figure 25 is a contour plot of the same distribution that has been mapped to
10° latitude. It can be seen from the comparison of these figures that the
distribution function decreases in the perpendicular velocity direction as the
latitude increases. This is due to to the increase in the perpendicular
component of the velocity as the particles travel from a relatively weak to a
stronger magnetic field region. The equatorial density for both Figures 24 and
25 is 10 cm™>, dropping to 4.6 cm™ at 10° latitude. If a constant electric field is
now added, pointing away from the equator, the initial equatorial distribution will
not be changed. Figure 26 shows how the distribution maps to A = 10° for a
0.1 uv/m electric field. As the distribution function is mapped off of the equator,
the electric field accelerates the low energy ions away from the equator. This
can be seen in Figure 26 where the distribution function has been mapped to
10° latitude. The black portion in the middle is the low energy portion of the
distribution function that has been excluded. Outside this region the distribution
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Figure 24. Bi-Maxwaellian Distribution Function.
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Figure 25. Bi-Maxwellian Distribution Function at A = 10° .
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function does not decrease as rapidly as when there is no electric field. This
causes an increase in the density away from the equator. The density at
A =10° when there is an electric field of 0.1 uv/m becomes 12.8 cm™. The
consequence of a parallel electric field then is to exclude the low energy portion
of the distribution for ions away from the magnetic equator which causes an
increase in density off the equator. The region excluded by conservation of
energy is the circular sector with the white circle with mv32 = q¢. Here ¢ = jEds
= 0.5 V. The effect of a constant parallel electric field on density is shown in
Figure 27. This result, coupled with previous observations (Fig. 15), motivates

work to develop a model! for self consistent electric fields.

B. SELF CONSISTENT ELECTRIC FIELD

The distributions shown thus far may be described as bi-Maxwellian with
temperatures kTpe, = 10-50 eV and kT,,, = 0.5-1.5 eV for ions, kT, = 27-250,
and k7,, = 8-19 eV for electrons. In addition to the observed plasma
distributions, it has been shown by Olsen [Ref. 10], that there is often cold
isotropic plasma population that is "hidden" by the spacecraft potential. This

cold isotropic background may comprise from 10-90% of the total density.

Persson [Ref. 11,12] has shown that an electric field parallel to the
magnetic field must be present to ensure quasi neutrality when the pitch angle
distributions for ions and electrons are different. The signature of parallel
electric fields on observed particle distributions have been previously examined
by Croley and others [Ref. 13,14]. Whipple [Ref. 15] has extended the theory

of effects of parallel electric fields on particle distributions. He obtained an
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expression for the electric potential as a function of latitude for arbitrary
distribution functions. This theoretical development is the basis for the work
developed below.

The purpose of this section is to determine an expression for the electric
field parallel to a magnetic field line, and the latidunal profile of the density,
given that the equatorial distribution for ions is bi-Maxwellian, or a bi-Maxwellian
superimposed upon a cold isotropic background, while the electron distribution
is isotropic. The choice of plasma distributions is motivated by a desire to
maintain reasonably analytic forms. Results from AMPTE [Ref. 16] indicate that
there are regions where this approximation is valid. The solution will be derived
for a steady state plasma where the density is so low that it may be considered
to experience collisionless motion along a magnetic field line. The particle
motion will be analyzed in terms of the conserved quantities along the magnetic

field line, that is, the total Energy and the magnetic moment.

Whipple [Ref 15] has obtained the following expression for the species

density for an arbitrary distribution function f:

n=n2 20 ©r I+ dEdp
T2 [m] LO =q¢B VE—qo—uB
where

E= %(v},,+vp"’.,)+q¢(s) = Total Energy

2
my, v2sin2
- Moep _ m sin‘a _ .
p= 28(s) 28(s) = Magnetic moment

é(s) is the electrical potential as a function of the distance s along the magnetic
tield line, and f* and - are the distribution functions for particles going in the

positive (ds/dt>0) and negative (ds/dt<0) directions.
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Liouvilles’ theorem states that the distribution function for a collisionless
plasma is constant along the particle trzjectories. The distribution can be
expressed entirely in terms of combinations of variables which remain constant.
In this case, these constants are the invariants of the motion E and u. Before
performing the required integrations to obtain the density, the distribution
function must first be converted from a function of velocities to a function of
these invariants of the motion. Defining the electric potential, and density 2t the
equator to be 0, and n,, respectively, the distribution functions at the equator

are:

uBo E-#Bo]

172 _[ L, E#Bo
fbi=no[ m ][ m ) o KT " WTpu

2Nk Tpory || 20K Tpar |

and

m 1% -E
"”="°[2ukr] e M.

Since equatorially trapped particles are being considered here it is
expected that there will be symmetry between particles travelling in opposite
directions, that is, f*=f"=f, and this will be assumed for this model.

Therefore

_xa[ ] [y N

If the bi-Maxwellian distribution function is now substituted into this equation the

density is given by

By E4B,
| *Top * KTpw

2
n __pol2 m
F;‘"B[m] [2ukTm][2nkT ] onwaua VE-qo¢—1B dEdy
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and a straightforward integration yields

-ﬁr_
.o — ()
Ng 1-y
where
Bo][ kTm]
'Y= 1 1 .
[ Bl KT
For an isotropic distribution
N _o KT
o e ". (2)

1. Bi-Maxwellian ions and Isotropic electrons

if the condition of quasi neutrality is now invoked the electric potential
may be solved for as a function of the distance s along the magnetic field line.
Using subscripts i and e for ions and electrons, and assuming that Hydrogen is

the only species of ions present, we now have

T %TL
. '
Solving for ¢
0= L in(t-y;) (3)
e 1 + 1
{ KToar, KT ]

Figure 28 shows this potential plotted as a function of magnetic latitude for
several ratios of kT, t0 kT,. The potential is a maximum at the equator,

with larger anisotropy ratios leading to a steeper slope.
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Figure 28. Electric Potential as a function of Magnetic Latitude.
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The parallel electric field may now be obtained by taking the gradient
of ¢.

_ - _ S
E = -V¢(s) = Mas s

from which we obtain

3[1- kTm’}cos‘A.sinl [3+5sin"’k]

kT,
P
E-= p 1 58,
—_— , in2
LR e[ KToar + kT, ] [1 —'y,] [1 +3sin x]

The magnitude of the electric field as a function of latitude is shown in Figure
29. The strength of the electric field is related to the degree of anisotropy with
greater anisotropy leading to stronger electric fields. The strength of the electric
field is on the order of 0.1 uv/m.

The density profile may also be obtained by substituting the expression
for ¢ (3) into (1), which after rearranging gives

! 1

kT""I
ey

n;
"_o = (1-y;)

This density profile is shown in Figure 30, from which we see that the density is
a maximum at the equator. This is the effect of particles trapped in a magnetic
mirror. Greater anisotropy confines the particles closer to the equator. This
result for a self consistent electric field differ from that for a constant electric
field, and gives the opposite trend in the density profile. In a sense, this is
contrary to our goal. Partly for this reason, we continue by looking at the

consequences of adding an isotropic background.
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2. Bi-Maxwellian and isotropic ions, Isotropic electrons

If we add an isotropic ion background and assume that the isotropic
ion temperature is equal to the parallel temperature of the ions (=1 eV), which is

reasonable, the ion and electron density profiles are then given by

8¢
; xT, _
Dicg iR R (@)
No 1~y
o0
ne _ A
No

where R is the ratio of the isotropic to the total ion density. Invoking the

condition of quasi neutrality yields

- k; =
1y
Solving for ¢, the result is

1
KT o
14—

kT, kT,
par; 1-R
= infR+
Q e n[ 1—'Yi] (5)

which upon differentiating to obtain the electric field is

KT,
KT, [1-n] 1-—22P oos‘;.sinx[3+5sin2x]
i KT,
E= - $
) oL A |14 TP [1- .]2 r+I-R [1+3sin2}.]2 |
. E kT‘ Yl 1_71'
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The density profile is again obtained by substituting for ¢ in equation (5) into (4)

to obtain

Figures 31, 32 and 33 are plots of the electric potential, the magnitude of the
electric field and density profiles as a function of magnetic latitude. The results
are plotted for ratios of the isotropic to total ion density from 10 to 90 percent.
The results are similar to those for a purely bi-Maxwellian ion distribution. The
isotropic component has the effect of lessening the effect of the anisotropic
distribution. The density and potential do not decrease as rapidly as latitude
increases, and the strength of the electric field is decreased. There are not,
however any qualitative changes in the shapes of the electric field, potential, or
density distributions.

C. COMPARISON OF OBSERVATIONS TO MODEL #2

Figure 34 is a plot of the density profile as observed by the DE-1 satellite
on day 315. The density has been normalized by the factor (L/4.5)* to
eliminate the radial dependence, introduced by the satellite orbit, from the
density profile. The dashed line is the density profile which is predicted by the
model for temperatures and density determined from the fit to the distribution
shown in Figure 22. These are kTpe, = 20 eV, k7, = 2.5 eV, and a total

density of 40 cm™ and the density of the bi-Maxwellian component is 30 cm™,
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The observed profile is consistent with the predicted results. This agreement is
obtained without any free parameters, aside from the assumption that the

electron distribution is isotropic.

Other measurements of the density profile have shown that there is more
typically a density minimum at the magnetic equator, in apparent oontradictio;i
with the predicted results. A characteristic density minimum profile is that
where the density is approximately constant between A = -10° to 10°, at which
latitudes it abruptly increases [Ref. 12]. In such cases, the density
approximately doubles over 1 degree of latitude. Such a density profile is
shown in Figure 35. Instead of invoking the condition of quasi neutrality to
determine the electric potential and paraliel electric field, the potential may be
solved for by substituting the given ion density profile into equation (4). The
resultant electric potential and field is shown in Figures 36 and 37. Now that
the potential is known the electron density profile may be solved for. If the
electrons are still assumed to be isotropic the electron density profile is given by
equation (3). Figure 38 is a plot of the given ion density profile and the electron
density profile that results. There is a relatively large difference in the ion and
electron densities away from the equator. The difference in the density profiles
increases with greater anisotropy ratios for the ions. This is in clear violation of

the principle of quasi neutrality of plasmas.

A possible explanation of this is that when a density minimum is observed,
the electrons are not described by an isotropic distribution, but by a bi-
Maxwellian with a parallel temperature that is greater than the perpendicular
temperature, that is, the electrons are field aligned. One example of a field
aligned distribution is seen by the SCATHA satellite on Day 179 of 1979.
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The pitch angle distribution for the field aligned portion of the electron
distribution is shown in Figure 39. The logof is plotted against cos?a, for low
pitch angles. The bi-Maxwaellian fit to this portion of the distribution gives for the
temperatures k7,,,=2.6 and kT,,=21 6V. When these values are used in the
determination of the density profile, the result is shown in Figure 40. The
dashed line in this figure is the electron density profile for the given ion density
profile. There is good agreement between the ion and electron densities up to
A=10% Beyond this latitude the analysis is invalid bec Jse the ion and electron
distributions are no longer described by a bi-Maxwellian. These results imply
that the density minimum that is observed is associated with field aligned

electron distributions.
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V. CONCLUSIONS

it has been shown that equatorially trapped plasmas may be described by
a bi-Maxwellian distribution function. The consequence of this distribution is
that an electric field parallel to the magnetic field must result in order to
preserve quasi neutrality. The strength of the electric field that results is on the
order of 0.1uv/m. The density profile that resuits from this distribution is a
maximum at the equator with greater anisotropy confining the particles closer to
the equator. The effect of the electric field is to reduce the amount by which
the density decreases. A comparison of the observed density profile to the
density profile predicted by the model, shown in Figure 34, shows good

agreement.

Data have also shown that a density minimum sometimes exists at the
magnetic equator with an abrupt increase in density at approximately +10° in
latitude where the density approximately doubles. If the density profile is given
the electric potential, and hence the electric field, may be calculated. The
results for the potential and strength of the electric field are similar to the
solution when quasi neutrality was assumed, with the exception that the
gradient in potential and strength of the electric field are very large at the
boundary where the density abruptly increases. The calculated electron density
profile shows that the condition of quasi neutrality is violated if the electrons are
assumed to be isotropic. If the electrons are instead field aligned, quasi
neutrality is preserved up to the boundary in the ion density profile. This
implies the presence of a field aligned electron distribution whenever a density

minimum is observed at the equator.
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